By Topic

Using mobile GPU for general-purpose computing – a case study of face recognition on smartphones

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kwang-Ting Cheng ; Univ. of California, Santa Barbara, CA, USA ; Yi-Chu Wang

As GPU becomes an integrated component in handheld devices like smartphones, we have been investigating the opportunities and limitations of utilizing the ultra-low-power GPU in a mobile platform as a general-purpose accelerator, similar to its role in desktop and server platforms. The special focus of our investigation has been on mobile GPU's role for energy-optimized real-time applications running on battery-powered handheld devices. In this work, we use face recognition as an application driver for our study. Our implementations on a smartphone reveals that, utilizing the mobile GPU as a co-processor can achieve significant speedup in performance as well as substantial reduction in total energy consumption, in comparison with a mobile-CPU-only implementation on the same platform.

Published in:

VLSI Design, Automation and Test (VLSI-DAT), 2011 International Symposium on

Date of Conference:

25-28 April 2011