By Topic

Prediction Based Collaborative Trackers (PCT): A Robust and Accurate Approach Toward 3D Medical Object Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lin Yang ; Department of Radiology, University of Medicine and Dentistry of New Jersey, ; Bogdan Georgescu ; Yefeng Zheng ; Yang Wang
more authors

Robust and fast 3D tracking of deformable objects, such as heart, is a challenging task because of the relatively low image contrast and speed requirement. Many existing 2D algorithms might not be directly applied on the 3D tracking problem. The 3D tracking performance is limited due to dramatically increased data size, landmarks ambiguity, signal drop-out or complex nonrigid deformation. In this paper, we present a robust, fast, and accurate 3D tracking algorithm: prediction based collaborative trackers (PCT). A novel one-step forward prediction is introduced to generate the motion prior using motion manifold learning. Collaborative trackers are introduced to achieve both temporal consistency and failure recovery. Compared with tracking by detection and 3D optical flow, PCT provides the best results. The new tracking algorithm is completely automatic and computationally efficient. It requires less than 1.5 s to process a 3D volume which contains millions of voxels. In order to demonstrate the generality of PCT, the tracker is fully tested on three large clinical datasets for three 3D heart tracking problems with two different imaging modalities: endocardium tracking of the left ventricle (67 sequences, 1134 3D volumetric echocardiography data), dense tracking in the myocardial regions between the epicardium and endocardium of the left ventricle (503 sequences, roughly 9000 3D volumetric echocardiography data), and whole heart four chambers tracking (20 sequences, 200 cardiac 3D volumetric CT data). Our datasets are much larger than most studies reported in the literature and we achieve very accurate tracking results compared with human experts' annotations and recent literature.

Published in:

IEEE Transactions on Medical Imaging  (Volume:30 ,  Issue: 11 )