By Topic

Chance-Constrained Robust Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ambikapathi, A. ; Inst. of Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Tsung-Han Chan ; Wing-Kin Ma ; Chong-Yung Chi

Effective unmixing of hyperspectral data cube under a noisy scenario has been a challenging research problem in remote sensing arena. A branch of existing hyperspectral unmixing algorithms is based on Craig's criterion, which states that the vertices of the minimum-volume simplex enclosing the hyperspectral data should yield high fidelity estimates of the endmember signatures associated with the data cloud. Recently, we have developed a minimum-volume enclosing simplex (MVES) algorithm based on Craig's criterion and validated that the MVES algorithm is very useful to unmix highly mixed hyperspectral data. However, the presence of noise in the observations expands the actual data cloud, and as a consequence, the endmember estimates obtained by applying Craig-criterion-based algorithms to the noisy data may no longer be in close proximity to the true endmember signatures. In this paper, we propose a robust MVES (RMVES) algorithm that accounts for the noise effects in the observations by employing chance constraints. These chance constraints in turn control the volume of the resulting simplex. Under the Gaussian noise assumption, the chance-constrained MVES problem can be formulated into a deterministic nonlinear program. The problem can then be conveniently handled by alternating optimization, in which each subproblem involved is handled by using sequential quadratic programming solvers. The proposed RMVES is compared with several existing benchmark algorithms, including its predecessor, the MVES algorithm. Monte Carlo simulations and real hyperspectral data experiments are presented to demonstrate the efficacy of the proposed RMVES algorithm.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 11 )