Cart (Loading....) | Create Account
Close category search window
 

Minimum-phase criteria for sampled systems via symbolic approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chi-Hsu Wang ; Sch. of Microelectron. Eng., Griffith Univ., Brisbane, Qld., Australia ; Wei-Yen Wang ; Chen-Chien Hsu

In this paper, we propose a symbolic approach to determine the sampling-time range which guarantees minimum-phase behaviours for a sampled system with a zero-order hold. By using Maple, a symbolic manipulation package, the symbolic transfer function of the sampled system, which contains sampling time T as an independent variable, can be easily obtained. We then adopt the critical stability constraints to determine the sampling-time range which ensures that the sampled system has only stable zeros. In comparison with existing methods, the approach proposed in this paper has less restrictions on the continuous plant and is very easy to implement in any symbolic manipulation packages. Several examples are illustrated to show the effectiveness of this approach

Published in:

Decision and Control, 1996., Proceedings of the 35th IEEE Conference on  (Volume:4 )

Date of Conference:

11-13 Dec 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.