By Topic

Optimization-Based Feedback Control for Pedestrian Evacuation From an Exit Corridor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shende, A. ; Dept. of Eng. Sci. & Mech., Virginia Polytech. Inst. & State Univ. (Virginia Tech), Blacksburg, VA, USA ; Singh, M.P. ; Kachroo, P.

The evacuation of pedestrians is the most important task when a building is subjected to a significant level of threat that compromises occupant safety. However, very few studies have dealt with the problem of controlling pedestrian evacuation in real time. Due to modern developments in sensor technology and computational facilities, it now seems possible to attempt a real-time controlled evacuation by instructing pedestrians to adjust their velocities according to an algorithm to effect an efficient evacuation. This paper deals with the development of such a control algorithm for an exit corridor where high congestion can be expected during evacuation. To accommodate the possible variation in the pedestrian density along the length, the corridor is divided into several sections. Using the conservation of pedestrian mass, ordinary differential equations that define the pedestrian flow in all sections are developed. For the system of state-space equations that define the flow in all the sections of the corridor, an optimization-based feedback control scheme is developed, which ensures the maximum input discharge subject to tracking the critical state and boundedness of the control variables. Simulation results are obtained, which indicate the superior performance of the controlled flow over the uncontrolled flow. The proposed flow control is also applicable to the regulation of vehicular traffic on a long section of a freeway in urban areas that receives input at several ramps along its length.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:12 ,  Issue: 4 )