By Topic

Multimodal identification using Markov logic networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lawson, W. ; Center for Appl. Res. in Artificial Intell., Naval Res. Lab., Washington, DC, USA ; Martinson, E.

Human robot interaction presents a unique set of challenges for biometric person identification. During normal interactions between the robot and a user, a tremendous amount of information is available for identification. Our objective is to use this information to identify users quickly and accurately during interactions with a robot. We present our approach for multimodal person identification using Markov logic networks (MLN). We use appearance, clothing, speaker recognition, and face recognition to identify a person during an interaction where they are speaking to the robot. We demonstrate the effectiveness of our approach using sequences of individuals speaking freely on a topic of their choosing.

Published in:

Automatic Face & Gesture Recognition and Workshops (FG 2011), 2011 IEEE International Conference on

Date of Conference:

21-25 March 2011