By Topic

Measuring and Reflecting Depth of Anesthesia Using Wavelet and Power Spectral Density

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nguyen-Ky, T.T. ; Centre for Syst. Biol., Univ. of Southern Queensland, Toowoomba, QLD, Australia ; Peng Wen ; Yan Li ; Gray, R.

This paper evaluates depth of anesthesia (DoA) monitoring using a new index. The proposed method preconditions raw EEG data using an adaptive threshold technique to remove spikes and low-frequency noise. We also propose an adaptive window length technique to adjust the length of the sliding window. The information pertinent to DoA is then extracted to develop a feature function using discrete wavelet transform and power spectral density. The evaluation demonstrates that the new index reflects the patient's transition from consciousness to unconsciousness with the induction of anesthesia in real time.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:15 ,  Issue: 4 )