By Topic

Multiple Event Time-to-Digital Conversion-Based Pulse Digitization for a 250 MHz Pulse Radio Ranging Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tom Redant ; Microelectronics and Sensor Laboratory, Department of Electrical Engineering (ESAT), Catholic University of Leuven (K.U. Leuven), Heverlee, Belgium ; Jorg Daniels ; Michiel S. J. Steyaert ; Wim Dehaene

A pulse digitizing approach for time-of-arrival pulse radio based ranging is introduced. It is based on a bank of time-to-digital converter (TDC) cores. A comparator bank triggers these multiple TDCs. This multiple event approach has advantages over classic single TDC solutions when facing unknown channel gains, noise corruption, and strong fading channel behavior. Pulses are digitized in a way that is superior in terms of performance versus power to classic A/D conversion. A power effort figure ξ and a new SNDR metric are introduced, easing performance comparison of pulse digitizers. A low power 8 channel digitizing system with a resolution of δtring=62.5 ps is presented for a cm accurate ranging application. The asynchronous, event-based nature of the architecture requires nonstrobed comparators to fire value crossing events. A dynamic range of 800:1 is realized. The digitization device is designed for 130 nm standard CMOS. An analog-baseband front-end I-Q energy detection and comparator threshold level configuration D/As are added to the design. The complete system is designed to consume 4 mW.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:58 ,  Issue: 11 )