By Topic

Temperature Dependence of Electrical Characteristics of Strained nMOSFETs Using Stress Memorization Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Po Chin Huang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; San Lein Wu ; Shoou Jinn Chang ; Cheng Wen Kuo
more authors

The temperature dependence of the electrical characteristics of strained nMOSFETs combining stress memorization technique (SMT) process and contact etch-stop layer has been investigated. The observed higher mobility and lower gate tunneling current of SMT devices indicate higher tensile stress in the channel and prove the true transmission of SMT-process-induced stress from the deposited SiN layer. Moreover, as temperature is increased, SMT devices show less deteriorated mobility and increased gate tunneling current, which are due to decreased phonon scattering and increased tunneling barrier height, respectively.

Published in:

Electron Device Letters, IEEE  (Volume:32 ,  Issue: 7 )