By Topic

Discovering Traffic Bottlenecks in an Urban Network by Spatiotemporal Data Mining on Location-Based Services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei-Hsun Lee ; Department of Transportation and Communication Management Science, National Cheng Kung University , Tainan, Taiwan ; Shian-Shyong Tseng ; Jin-Lih Shieh ; Hsiao-Han Chen

Discovering traffic bottlenecks and taking action to alleviate congestion to enhance the performance of a traffic network are the most important tasks for the advanced traffic management system in the intelligent transportation system. However, traffic bottlenecks are affected by several factors and vary with spatial and temporal environments, which makes them difficult to define and discover. This paper proposes a three-phase spatiotemporal traffic bottleneck mining (STBM) model, including several spatiotemporal traffic patterns and STBM algorithms that use the raw data of location-based services to discover urban network spatiotemporal traffic bottlenecks. This paper implements an STBM prototype system based on a taxi dispatching system in a Taipei, Taiwan, urban network. The experimental results show that the congestion prediction capability of the proposed heuristic methods (congestion-propagation heuristic) is up to 79.6% during workdays and 72.1% on weekends, which outperforms other methods (e.g., the congestion-converge heuristic, the congestion-drop heuristic, and congested object item), and the discovered spatiotemporal bottlenecks match the travelers' experience.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:12 ,  Issue: 4 )