Cart (Loading....) | Create Account
Close category search window
 

When In-Network Processing Meets Time: Complexity and Effects of Joint Optimization in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Qiao Xiang ; Dept. of Comput. Sci., Wayne State Univ., Detroit, MI, USA ; Hongwei Zhang ; Jinhong Xu ; Xiaohui Liu
more authors

As sensornets are increasingly being deployed in mission-critical applications, it becomes imperative that we consider application QoS requirements in in-network processing (INP). Toward understanding the complexity of joint QoS and INP optimization, we study the problem of jointly optimizing packet packing (i.e., aggregating shorter packets into longer ones) and the timeliness of data delivery. We identify the conditions under which the problem is strong NP-hard, and we find that the problem complexity heavily depends on aggregation constraints (in particular, maximum packet size and reaggregation tolerance) instead of network and traffic properties. For cases when the problem is NP-hard, we show that there is no polynomial-time approximation scheme (PTAS); for cases when the problem can be solved in polynomial time, we design polynomial time, offline algorithms for finding the optimal packet packing schemes. To understand the impact of joint QoS and INP optimization on sensornet performance, we design a distributed, online protocol tPack that schedules packet transmissions to maximize the local utility of packet packing at each node. Using a testbed of 130 TelosB motes, we experimentally evaluate the properties of tPack. We find that jointly optimizing data delivery timeliness and packet packing and considering real-world aggregation constraints significantly improve network performance. Our findings shed light on the challenges, benefits, and solutions of joint QoS and INP optimization, and they also suggest open problems for future research.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:10 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.