By Topic

Generalizing Common Tasks in Automated Skin Lesion Diagnosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wighton, P. ; Dept. of Comput. Sci., Simon Fraser Univ., Burnaby, BC, Canada ; Lee, T.K. ; Lui, H. ; McLean, D.I.
more authors

We present a general model using supervised learning and MAP estimation that is capable of performing many common tasks in automated skin lesion diagnosis. We apply our model to segment skin lesions, detect occluding hair, and identify the dermoscopic structure pigment network. Quantitative results are presented for segmentation and hair detection and are competitive when compared to other specialized methods. Additionally, we leverage the probabilistic nature of the model to produce receiver operating characteristic curves, show compelling visualizations of pigment networks, and provide confidence intervals on segmentations.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:15 ,  Issue: 4 )