By Topic

Object identification in dynamic environment using sensor fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nagla, K.S. ; Dr BR Ambedkar Nat. Inst. of Technol., Jalandhar, India ; Uddin, M. ; Singh, D. ; Kumar, R.

Multisensor data fusion is highly applicable in robotics applications because the relationships among objects and events changes due to the change in orientation of robot, snag in sensory information, sensor range and environmental conditions etc. High level and low level image processing in machine vision are widely involved to investigate object identification in complex application. Due to the limitations of vision technology still it is difficult to identify the objects in certain environments. A new technique of object identification using sonar sensor fusion has been proposed. This paper explains the computational account of the data fusion using Bayesian and neural network to recognize the shape of object in the dynamic environment.

Published in:

Applied Imagery Pattern Recognition Workshop (AIPR), 2010 IEEE 39th

Date of Conference:

13-15 Oct. 2010