By Topic

Optimal charging strategies of electric vehicles in the UK power market

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Acha, S. ; Dept. of Electr. Eng., Imperial Coll. London, London, UK ; Green, T.C. ; Shah, N.

In order to gain the most from their deployment, it is imperative for stakeholders to exploit the main benefits electric vehicles bring to utilities. Therefore, this paper focuses on the aspects required to model the management of electricity supply for electric vehicles. The framework presented details a time coordinated optimal power flow (TCOPF) tool to illustrate the tradeoffs distribution network operators (DNO) might encounter when implementing various load control approaches of electric vehicles. Within an UK context, a case study is performed where the TCOPF tool functions as the intermediary entity that coordinates cost-effective interactions between power markets, network operators, and the plugged vehicles. Results depict the stochastic but optimal charging patterns stakeholders might visualise from electric vehicles in local networks as they are operated to reduce energy and emission costs. Furthermore, results show current emission costs have a negligible weight in the optimisation process when compared to wholesale electricity costs.

Published in:

Innovative Smart Grid Technologies (ISGT), 2011 IEEE PES

Date of Conference:

17-19 Jan. 2011