By Topic

Capabilities-Driven Curriculum Design for Hydrogen and Fuel Cell Technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ming-Jenn Wu ; Dept. of Ind. Educ., Nat. Taiwan Normal Univ., Taipei, Taiwan ; Chi-Yo Huang ; Yi-Hsuan Hung

Fuel cells, one of the most promising devices which may replace the traditional fossil fuels, have emerged during the past decade as one of the possible solutions for resolving the severe pollution, global warming and possible future shortages of fossil fuels. Albeit important, hydrogen and fuel cell education was not bewared. Further, albeit new employment opportunities are opening up for graduates with solid background of fuel cell engineering, very few scholars tried to develop curriculum for future fuel cell engineers. Apparently, a design of the curriculum in the related field of the fuel cell engineering will be very helpful for the engineering students' capability expansions and future job seeking. By introducing the concepts of capability-driven curriculum design, a multiple criteria decision making (MCDM) framework consisting of the modified Delphi method as well as the Grey Relational Analysis (GRA) was defined. Fuel cell experts from the academic and research institutes were invited for providing opinions in capability derivations and curriculum design. Based on the experts' opinions, capabilities including understanding of the characteristics of various batteries, understanding of the evolution and theories of batteries, etc. were recognized by the experts as the essential capabilities. Meanwhile, theory and design of the proton exchange membrane fuel cell, materials and devices of the proton exchange membrane fuel cell, fuel cell system design and applications, etc. were selected as the components of the curriculum for developing the capabilities of a future fuel cell engineer.

Published in:

Green Technologies Conference (IEEE-Green), 2011 IEEE

Date of Conference:

14-15 April 2011