Cart (Loading....) | Create Account
Close category search window
 

A 23.4 mW 68 dB Dynamic Range Low Band CMOS Hybrid Tracking Filter for ATSC Digital TV Tuner Adopting RC and Gm-C Topology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kuduck Kwon ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Kwyro Lee

In this paper, a 48-200 MHz CMOS hybrid tracking low-pass filter with low power and high dynamic range is presented to solve a local oscillator harmonic-mixing problem for Advanced Television Systems Committee terrestrial digital TV tuner integrated circuits. For low power consumption, the first-order passive RC filter and the second-order transconductor-C filter are combined to implement the third-order Chebyshev tracking low-pass filter. A transconductor linearization technique based on a method of multiple gated transistors is adopted to achieve high dynamic range. Fabricated in a 0.18 μm CMOS process, it achieves a maximum in-band input-referred noise density of 5.1 nV/√Hz and maximum in-band output-referred third-order intercept point of 17.3 dBm, while dissipating 23.4 mW with 1.8 V. The total chip area is 0.6 mm × 0.4 mm.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:58 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.