By Topic

Fuzzy C-Means Clustering of Signal Functional Principal Components for Post-Processing Dynamic Scenarios of a Nuclear Power Plant Digital Instrumentation and Control System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Francesco Di Maio ; Energy Department, Politecnico di Milano, Milano, Italy ; Piercesare Secchi ; Simone Vantini ; Enrico Zio

This paper addresses the issue of the classification of accident scenarios generated in a dynamic safety and reliability analyses of a Nuclear Power Plant (NPP) equipped with a Digital Instrumentation and Control system (I&C). More specifically, the classification of the final state reached by the system at the end of an accident scenario is performed by Fuzzy C-Means clustering the Functional Principal Components (FPCs) of selected relevant process variables. The approach allows capturing the characteristics of the process evolution determined by the occurrence, timing, and magnitudes of the fault events. An illustrative case study is considered, regarding the fault scenarios of the digital I&C system of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The results obtained are compared with those of the Kth Nearest Neighbor (KNN), and Classification and Regression Tree (CART) classifiers.

Published in:

IEEE Transactions on Reliability  (Volume:60 ,  Issue: 2 )