By Topic

Game Theoretic Analysis of Adaptive Radar Jamming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bachmann, D.J. ; Defence Sci. & Technol. Organ., Edinburgh, SA, Australia ; Evans, R.J. ; Moran, B.

A radar and a jammer are considered as informed opponents "playing" in a noncooperative two-player, zero-sum game. The effects of jamming on the target detection performance of a radar using constant false alarm rate (CFAR) processing are analyzed using a game theoretic approach for three cases: 1) ungated range noise (URN), 2) range-gated noise (RGN) and 3) false-target (FT) jamming. Assuming a Swerling type II target in the presence of Rayleigh-distributed clutter, utility functions are described for cell-averaging (CA) and order statistic (OS) CFAR processors and the three cases of jamming. The analyses included optimizations of these utility functions subject to certain constraints with respect to control variables (strategies) in the jammer such as jammer power and the spatial extent of jamming and control variables in the radar such as threshold parameter and reference window size. The utility functions are evaluated over the players' strategy sets, and the resulting matrix-form games are solved for the optimal or "best response" strategies of both the jammer and the radar.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:47 ,  Issue: 2 )