By Topic

Application of the Dynamic Allan Variance for the Characterization of Space Clock Behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sesia, I. ; INRIM, Torino, Italy ; Galleani, L. ; Tavella, P.

Due to their stability atomic clocks represent the core of navigation systems such as GPS and the future European Galileo system. To identify possible anomalies, it is fundamental to detect when the clock stability varies with time. The dynamic Allan variance (DAVAR) makes this monitoring process possible. We extend the DAVAR to the case of a time series with missing data, and we analyze the presence of periodic behaviors, two common phenomena in space clocks.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:47 ,  Issue: 2 )