By Topic

Vision-Based Navigation in Autonomous Close Proximity Operations using Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khansari-Zadeh, S.M. ; Dept. of Aerosp. Eng., Sharif Univ. of Technol., Tehran, Iran ; Saghafi, F.

Tight unmanned aerial vehicle (UAV) autonomous missions such as formation flight (FF) and aerial refueling (AR) require an active controller that works in conjunction with a precise sensor that is able to identify an in-front aircraft and to estimate its relative position and orientation. Among possible choices vision sensors are of interest because they are passive in nature and do not require the cooperation of the in-front aircraft in any way. In this paper new vision-based estimation and navigation algorithms based on neural networks is developed. The accuracy and robustness of the proposed algorithm have been validated via a detailed modeling and a complete virtual environment based on the six degrees of freedom (6-DOF) nonlinear simulation of aircraft dynamics in an autonomous aerial refueling (AAR) mission. In addition a full-state time-variant tracking controller based on the pole placement method is designed to generate required commands for aircraft control surfaces and engine during an AAR. The performance of the system in the presence of noise has also been examined.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:47 ,  Issue: 2 )