By Topic

Robust System Design to Overcome CMOS Reliability Challenges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mitra, S. ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Brelsford, K. ; Young Moon Kim ; Lee, H.-H.K.
more authors

Today's mainstream electronic systems typically assume that transistors and interconnects operate correctly over their useful lifetime. With enormous complexity and significantly increased vulnerability to failures compared to the past, future system designs cannot rely on such assumptions. For coming generations of silicon technologies, several causes of hardware reliability failures, largely benign in the past, are becoming significant at the system level. Robust system design is essential to ensure that future systems perform correctly despite rising complexity and increasing disturbances. This paper describes three techniques that can enable a sea change in robust system design through cost-effective tolerance and prediction of failures in hardware during system operation: 1) efficient soft error resilience; 2) circuit failure prediction; and 3) effective on-line self-test and diagnostics. The need for global optimization across multiple abstraction layers is also demonstrated.

Published in:

Emerging and Selected Topics in Circuits and Systems, IEEE Journal on  (Volume:1 ,  Issue: 1 )