By Topic

On Gate Capacitance of Nanotube Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

This letter presents a systematic investigation of the gate capacitance CG of thin-film transistors (TFTs) based on randomly distributed single-walled carbon nanotubes (SWCNTs) in the channel. In order to reduce false counting of SWCNTs that do not contribute to current conduction, CG is directly measured on the TFTs using a well-established method for MOSFETs. Frequency dispersion of CG is observed, and it is found to depend on the percolation behavior in SWCNT networks. This dependence can be accounted for using an RC transmission line model. These results are of important implications for the determination of carrier mobility in nanoparticle-based TFTs.

Published in:

Electron Device Letters, IEEE  (Volume:32 ,  Issue: 5 )