By Topic

A Sub-100 \mu W MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pandey, J. ; Qualcomm Inc., San Diego, CA, USA ; Otis, B.P.

For fully autonomous implantable or body-worn devices running on harvested energy, the peak and average power dissipation of the radio transmitter must be minimized. Additionally, link symmetry must be maintained for peer-to-peer network applications. We propose a highly integrated 90 μW 400 MHz MICS band transmitter with an output power of 20 μW, leading to a 22% global efficiency - the highest reported to date for low-power MICS band systems. We introduce a new transmitter architecture based on cascaded multi-phase injection locking and frequency multiplication to enable low power operation and high global efficiency. Our architecture eliminates slow phase/delay-locked loops for frequency synthesis and uses injection locking to achieve a settling time <;250 ns permitting very aggressive duty cycling of the transmitter to conserve energy. At a data-rate of 200 kbps, the transmitter achieves an energy efficiency of 450 pJ/bit. Our 400 MHz local oscillator topology demonstrates a figure-of-merit of 204 dB while locked to a stable crystal reference. The transmitter occupies 0.04 mm2 of active die area in 130 nm CMOS and is fully integrated except for the crystal and the matching network.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:46 ,  Issue: 5 )