By Topic

SPIRE: Efficient Data Inference and Compression over RFID Streams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yanming Nie ; Northwestern Polytechnical University, Xi'an ; Richard Cocci ; Zhao Cao ; Yanlei Diao
more authors

Despite its promise, RFID technology presents numerous challenges, including incomplete data, lack of location and containment information, and very high volumes. In this work, we present a novel data inference and compression substrate over RFID streams to address these challenges. Our substrate employs a time-varying graph model to efficiently capture possible object locations and interobject relationships such as containment from raw RFID streams. It then employs a probabilistic algorithm to estimate the most likely location and containment for each object. By performing such online inference, it enables online compression that recognizes and removes redundant information from the output stream of this substrate. We have implemented a prototype of our inference and compression substrate and evaluated it using both real traces from a laboratory warehouse setup and synthetic traces emulating enterprise supply chains. Results of a detailed performance study show that our data inference techniques provide high accuracy while retaining efficiency over RFID data streams, and our compression algorithm yields significant reduction in output data volume.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:24 ,  Issue: 1 )