By Topic

State Monitoring in Cloud Datacenters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shicong Meng ; Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA, USA ; Ling Liu ; Ting Wang

Monitoring global states of a distributed cloud application is a critical functionality for cloud datacenter management. State monitoring requires meeting two demanding objectives: high level of correctness, which ensures zero or low error rate, and high communication efficiency, which demands minimal communication cost in detecting state updates. Most existing work follows an instantaneous model which triggers state alerts whenever a constraint is violated. This model may cause frequent and unnecessary alerts due to momentary value bursts and outliers. Countermeasures of such alerts may further cause problematic operations. In this paper, we present a WIndow-based StatE monitoring (WISE) framework for efficiently managing cloud applications. Window-based state monitoring reports alerts only when state violation is continuous within a time window. We show that it is not only more resilient to value bursts and outliers, but also able to save considerable communication when implemented in a distributed manner based on four technical contributions. First, we present the architectural design and deployment options for window-based state monitoring with centralized parameter tuning. Second, we develop a new distributed parameter tuning scheme enabling WISE to scale to much more monitoring nodes as each node tunes its monitoring parameters reactively without global information. Third, we introduce two optimization techniques, including their design rationale, correctness and usage model, to further reduce the communication cost. Finally, we provide an in-depth empirical study of the scalability of WISE, and evaluate the improvement brought by the distributed tuning scheme and the two performance optimizations. Our results show that WISE reduces communication by 50-90 percent compared with instantaneous monitoring approaches, and the improved WISE gains a clear scalability advantage over its centralized version.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 9 )