By Topic

Interaction-Free Quantum Optical Fredkin Gates in \chi ^{(2)} Microdisks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Ping Huang ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA ; Kumar, P.

We present novel “interaction-free” realizations of quantum optical Fredkin gates that do not rely on direct physical coupling between the target light (signal) and the control light (pump). The interaction-free feature of such gates allow to overcome the fundamental limits of photon loss and quantum-state decoherence imposed by the signal-pump coupling. This advantage, together with the low inherent quantum-noise level in χ(2) microdisks, gives rise to substantially improved performance over the existing Fredkin-gate designs. Explicitly using lithium-niobate mircrodisks, we present two kinds of interaction-free Fredkin gates, a phase gate and an optical-path gate, both of which are designed with telecom-band applications in mind. For both gates, the threshold pump peak power to achieve a gate contrast >;100 and a signal loss <;10% is hundreds of microwatts for practical parameters of the devices.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:18 ,  Issue: 2 )