By Topic

Energy Conversion Efficiency of a Novel Hybrid Solar System for Photovoltaic, Thermoelectric, and Heat Utilization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dajiang Yang ; Department of Civil Engineering and Engineering Mechanics, Columbia University, NY, USA ; Huiming Yin

A novel hybrid solar system has been designed to utilize photovoltaic (PV) cells, thermoelectric (TE) modules, and hot water (HW) through a multilayered building envelope. Water pipelines are cast within a functionally graded material layer to serve as a heat sink, allowing heat to be easily transferred into flowing water through an aluminum-rich surface, while remaining insulated by a polymer rich bottom. The theoretical energy conversion efficiency limit of the system has been investigated for documenting the potential of this hybrid solar panel design. Given the material properties of each layer, the actual energy conversion efficiency depends on the solar irradiation, ambient temperature, and water flow temperature. Compared to the traditional solar panel, this design can achieve better overall efficiencies with higher electrical power output and thermal energy utilization. Based on theoretical conversion efficiency limits, the PV/TE/HW system is superior to PV/HW and traditional PV systems with 30% higher output electrical power. However, the advantages of the PV/TE/HW system are not significant from experimental data due to the low efficiency of the bulk TE material. Thus, QW/QD TE materials are highly recommended to enhance the overall efficiency of the PV/TE/HW design. This design is general and open to new PV and TE materials with emerging nanotechnology for higher efficiencies.

Published in:

IEEE Transactions on Energy Conversion  (Volume:26 ,  Issue: 2 )