By Topic

Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Acito, N. ; Dipt. Armi Navali, Accademia Navale, Livorno, Italy ; Diani, M. ; Corsini, G.

In this paper, a novel method to characterize random noise sources in hyperspectral (HS) images is proposed. Noise is described using a parametric model that accounts for the dependence of noise variance on the useful signal. Such model takes into account the photon noise contribution and is therefore suitable for noise characterization in the data acquired by new-generation HS sensors where electronic noise is not dominant. A new algorithm is developed for the estimation of noise parameters which consists of two steps. First, the noise and signal realizations are extracted from the original image by resorting to the multiple-linear-regression-based approach. Then, the model parameters are estimated by using a maximum likelihood approach. The new method does not require the intervention of a human operator and the selection of homogeneous regions in the scene. The performance of the new technique is analyzed on simulated HS data. Results on real data are also presented and discussed. Images acquired with a new-generation HS camera are analyzed to give an experimental evidence of the dependence of random noise on the signal level and to show the results of the estimation algorithm. The algorithm is also applied to a well-known Airborne Visible/Infrared Imaging Spectrometer data set in order to show its effectiveness when noise is dominated by the signal-independent term.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 8 )