By Topic

Detecting Changes in Hyperspectral Imagery Using a Model-Based Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Meola, J. ; RYMT, Air Force Res. Lab., Wright-Patterson AFB, OH, USA ; Eismann, M.T. ; Moses, R.L. ; Ash, J.N.

Within the hyperspectral community, change detection is a continued area of interest. Interesting changes in imagery typically correspond to changes in material reflectance associated with pixels in the scene. Using a physical model describing the sensor-reaching radiance, change detection can be formulated as a statistical hypothesis test. Complicating the problem of change detection is the presence of shadow, illumination, and atmospheric differences, as well as misregistration and parallax error, which often produce the appearance of change. The proposed physical model incorporates terms to account for both direct and diffuse shadow fractions to help mitigate false alarms associated with shadow differences between scenes. The resulting generalized likelihood ratio test (GLRT) provides an indicator of change at each pixel. The maximum likelihood estimates of the physical model parameters used for the GLRT are obtained from the entire joint data set to take advantage of coupled information existing between pixel measurements. Simulation results using synthetic and real imagery demonstrate the efficacy of the proposed approach.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 7 )