Cart (Loading....) | Create Account
Close category search window
 

Sparse Multilayer Perceptron for Phoneme Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sivaram, G.S.V.S. ; ECE Dept., Johns Hopkins Univ., Baltimore, MD, USA ; Hermansky, H.

This paper introduces the sparse multilayer perceptron (SMLP) which jointly learns a sparse feature representation and nonlinear classifier boundaries to optimally discriminate multiple output classes. SMLP learns the transformation from the inputs to the targets as in multilayer perceptron (MLP) while the outputs of one of the internal hidden layers is forced to be sparse. This is achieved by adding a sparse regularization term to the cross-entropy cost and updating the parameters of the network to minimize the joint cost. On the TIMIT phoneme recognition task, SMLP-based systems trained on individual speech recognition feature streams perform significantly better than the corresponding MLP-based systems. Phoneme error rate of 19.6% is achieved using the combination of SMLP-based systems, a relative improvement of 3.0% over the combination of MLP-based systems.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:20 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.