Cart (Loading....) | Create Account
Close category search window
 

Ultra-high coupling efficiency of MEMS tunable laser via 3-dimensional micro-optical coupling system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Tao, J.F. ; Sch. of EEE, Nanyang Technol. Univ., Singapore, Singapore ; Yu, A.B. ; Cai, H. ; Zhu, W.M.
more authors

This paper reports a 3-dimensional (3D) micro-optical coupling system for improving coupling efficiency in the Littrow configured micro-electro-mechanical system (MEMS) tunable lasers. In the coupling system, an optical fiber acts as a rod lens for light convergence in the vertical plane, while a deep-etched silicon parabolic mirror confines the light in the horizontal plane. Compared with previous MEMS lasers without any light focusing or only one-directional focusing mechanism, the proposed 3D micro-optical system allows longer external cavity length and provides higher coupling efficiency. A prototype is fabricated on a SOI-wafer with an etching depth of 100 μm. The laser obtains a coupling efficiency as high as 76.5%, which is much higher than typical value of 3% - 50% in previous designs. The laser has dimensions as small as 3 mm × 3.2 mm in single-chip integration. It achieves large tuning range of 48.3 nm within 1 ms tuning speed.

Published in:

Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on

Date of Conference:

23-27 Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.