By Topic

GA-Neural Approach for Latent Finger Print Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shapoori, S. ; Dept. of Electron. & Electr. Eng., Univ. of Sheffield, Sheffield, UK ; Allinson, N.

Latent finger print matching is one of the freshest areas in science. The current methods of latent finger print matching are manual and reliable on human experience. Unfortunately, a system, which can perform the latent fingerprint matching automatically, does not exist. The eye tracking technology is able to record the eye movement and could provide useful information about the user search strategy. In this paper, the experimental data obtained from an eye tracker is analyzed by clustering analysis and a neural network based system is designed to learn the search strategy of the experts. The results show that the system is able to predict the optimum search strategy based on expert's experiences.

Published in:

Intelligent Systems, Modelling and Simulation (ISMS), 2011 Second International Conference on

Date of Conference:

25-27 Jan. 2011