By Topic

Approximate expressions for the variances of non-randomized error estimators and CoD estimators for the discrete histogram rule

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ting Chen ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA ; Braga-Neto, U.

Estimation of the classification error and of the coefficient of determination (CoD) is a fundamental issue in discrete prediction problems. Analytical expressions for exact performance metrics of non-randomized error estimators and CoD estimators have been derived in previous publications by the authors. However, computation of these expressions becomes problematic as the sample size or predictor complexity increases, particularly in the case of second moments. Thus, fast and accurate approximations are desirable. In this paper, we make approximations to the variances of resubstitution and leave-one-out error estimators and CoD estimators. Our results show that these approximations not only are quite accurate but also reduce computation time tremendously.

Published in:

Genomic Signal Processing and Statistics (GENSIPS), 2010 IEEE International Workshop on

Date of Conference:

10-12 Nov. 2010