Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Pathway and network analysis probing epigenetic influences on chemosensitivity in ovarian cancer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Banerjee, N. ; Philips Res., Briarcliff Manor, NY, USA ; Janevski, A. ; Kamalakaran, S. ; Varadan, V.
more authors

Ovarian cancer is the leading cause of death in gynecological cancers. Carboplatinum-based therapy is the standard treatment choice for ovarian cancer. However, a majority of the patients develop resistance to carboplatinum fairly rapidly hence there is a clinical need for early predictors of carboplatinum resistance. While there are a few indicative gene markers, they have poor sensitivity and specificity in predicting response accurately. It is essential that multiple high throughput molecular profiling modalities are integrated and investigated to provide a full picture of the ongoing processes. Here, we propose a methodology to identify central players in platinum resistance from a list of stratifying genes using a data-driven approach. We have used correlation of DNA methylation and gene expression data and applied network based features to identify the influence of DNA methylation on gene expression. This provides interpretive analysis and is complementary to the biological pathway-enrichment approaches. We suggest that our method, based on network structure properties, adds a useful layer to multi-modal evidence integration to focus on the key processes and interactions in resistance mechanisms.

Published in:

Genomic Signal Processing and Statistics (GENSIPS), 2010 IEEE International Workshop on

Date of Conference:

10-12 Nov. 2010