By Topic

Segregation-based subspace clustering for huge dimensional data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alsagabi, M.I. ; Dept. of Electr. & Comput. Engi neering, Univ. of Minnesota, Minneapolis, MN, USA ; Tewfik, A.H.

Clustering algorithms break down when the data points fall in huge-dimensional spaces. To tackle this problem, many subspace clustering methods were proposed to build up a subspace where data points cluster efficiently. The bottom-up approach is used widely to select a set of candidate features, and then to use a portion of this set to build up the hidden subspace step by step. The complexity depends exponentially or cubically on the number of the selected features. In this paper, we present SEGCLU, a SEGregation-based subspace CLUstering method which significantly reduces the size of the candidate features' set and has a cubic complexity. This algorithm was applied at noise-free data of DNA copy numbers of two groups of autistic and typically developing children to extract a potential bio-marker for autism. 85% of the individuals were classified correctly in a 13-dimensional subspace.

Published in:

Genomic Signal Processing and Statistics (GENSIPS), 2010 IEEE International Workshop on

Date of Conference:

10-12 Nov. 2010