By Topic

Design of halfband filters for orthonormal wavelets using ripple-pinning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tay, D.B.H. ; Dept. of Electron. Eng., LaTrobe Univ., Bundoora, VIC, Australia

The design of halfband filters for orthonormal wavelet with a prescribed number of vanishing moment and prescribed ripple amplitudes is described. The technique is an extension of the zero-pinning (ZP) technique and is called ripple-pinning (RP). In ZP, the positions of stopband minima (of a Bernstein polynomial) are specified explicitly and the stopband maxima (position and amplitude) depend implicitly on the minima. In RP, the amplitude of the ripples is explicitly specified and this leads to a set of non-linear (polynomial) equations with the position of both the minima and maxima as unknowns. An iterative algorithm is proposed to solve the equations and design examples will be presented. Two variations of the RP technique, which allow for the transition band sharpness to be explicitly specified, are also presented.

Published in:

Signal Processing, IET  (Volume:5 ,  Issue: 1 )