By Topic

Seamless Connectivity and Routing in Vehicular Networks with Infrastructure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Annese, S. ; CSP, ICT Innovation, Torino, Italy ; Casetti, C. ; Chiasserini, C. ; Di Maio, N.
more authors

The provision of UDP-based multimedia streams to vehicular users through a roadside wireless mesh network requires a fast-switching, robust protocol architecture. We consider vehicles (e.g., cars, buses or streetcars) that connect to different roadside mesh nodes as they move in an urban environment, and study the joint problem of traffic delivery and connectivity management in such scenario. We identify BATMAN as a candidate layer-2 implementation of a routing protocol for vehicular networks, and we use simulation to compare its performance with other routing protocols for wireless ad hoc and mesh networks. Since BATMAN shows some inconsistencies in its behavior, we propose an improved version of the protocol, named smart-window BATMAN (sw-BATMAN). Then, we design two testbeds that include both roadside and vehicular mesh nodes. There, we implement the selected routing solution along with a handover mechanism that, by leveraging a channel selection scheme, allows vehicles to connect to the different roadside mesh nodes in a seamless manner. The performance assessment on our testbeds shows the efficiency of the proposed solution and highlights that our traffic routing and connectivity management are suitable for sustaining the handover of UDP streams in a vehicular environment, in a seamless manner.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:29 ,  Issue: 3 )