By Topic

Distributed State Estimation for Discrete-Time Sensor Networks With Randomly Varying Nonlinearities and Missing Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jinling Liang ; Dept. of Math., Southeast Univ., Nanjing, China ; Zidong Wang ; Xiaohui Liu

This paper deals with the distributed state estimation problem for a class of sensor networks described by discrete-time stochastic systems with randomly varying nonlinearities and missing measurements. In the sensor network, there is no centralized processor capable of collecting all the measurements from the sensors, and therefore each individual sensor needs to estimate the system state based not only on its own measurement but also on its neighboring sensors' measurements according to certain topology. The stochastic Brownian motions affect both the dynamical plant and the sensor measurement outputs. The randomly varying nonlinearities and missing measurements are introduced to reflect more realistic dynamical behaviors of the sensor networks that are caused by noisy environment as well as by probabilistic communication failures. Through available output measurements from each individual sensor, we aim to design distributed state estimators to approximate the states of the networked dynamic system. Sufficient conditions are presented to guarantee the convergence of the estimation error systems for all admissible stochastic disturbances, randomly varying nonlinearities, and missing measurements. Then, the explicit expressions of individual estimators are derived to facilitate the distributed computing of state estimation from each sensor. Finally, a numerical example is given to verify the theoretical results.

Published in:

Neural Networks, IEEE Transactions on  (Volume:22 ,  Issue: 3 )