By Topic

Enhanced Identification of Battery Models for Real-Time Battery Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mark Sitterly ; Department of Electrical and Computer Engineering, Wayne State University, Detroit, U.S.A. ; Le Yi Wang ; G. George Yin ; Caisheng Wang

Renewable energy generation, vehicle electrification, and smart grids rely critically on energy storage devices for enhancement of operations, reliability, and efficiency. Battery systems consist of many battery cells, which have different characteristics even when they are new, and change with time and operating conditions due to a variety of factors such as aging, operational conditions, and chemical property variations. Their effective management requires high fidelity models. This paper aims to develop identification algorithms that capture individualized characteristics of each battery cell and produce updated models in real time. It is shown that typical battery models may not be identifiable, unique battery model features require modified input/output expressions, and standard least-squares methods will encounter identification bias. This paper devises modified model structures and identification algorithms to resolve these issues. System identifiability, algorithm convergence, identification bias, and bias correction mechanisms are rigorously established. A typical battery model structure is used to illustrate utilities of the methods.

Published in:

IEEE Transactions on Sustainable Energy  (Volume:2 ,  Issue: 3 )