Cart (Loading....) | Create Account
Close category search window

Deep and Wide: Multiple Layers in Automatic Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Morgan, N. ; Int. Comput. Sci. Inst., Berkeley, CA, USA

This paper reviews a line of research carried out over the last decade in speech recognition assisted by discriminatively trained, feedforward networks. The particular focus is on the use of multiple layers of processing preceding the hidden Markov model based decoding of word sequences. Emphasis is placed on the use of multiple streams of highly dimensioned layers, which have proven useful for this purpose. This paper ultimately concludes that while the deep processing structures can provide improvements for this genre, choice of features and the structure with which they are incorporated, including layer width, can also be significant factors.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:20 ,  Issue: 1 )
Biometrics Compendium, IEEE

Date of Publication:

Jan. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.