By Topic

Refined Coding Bounds and Code Constructions for Coherent Network Error Correction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shenghao Yang ; Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Shatin, China ; Yeung, R.W. ; Chi Kin Ngai

Coherent network error correction is the error-control problem in network coding with the knowledge of the network codes at the source and sink nodes. With respect to a given set of local encoding kernels defining a linear network code, we obtain refined versions of the Hamming bound, the Singleton bound, and the Gilbert-Varshamov bound for coherent network error correction. Similar to its classical counterpart, this refined Singleton bound is tight for linear network codes. The tightness of this refined bound is shown by two construction algorithms of linear network codes achieving this bound. These two algorithms illustrate different design methods: one makes use of existing network coding algorithms for error-free transmission and the other makes use of classical error-correcting codes. The implication of the tightness of the refined Singleton bound is that the sink nodes with higher maximum flow values can have higher error correction capabilities.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 3 )