By Topic

Testing for Spatial Heterogeneity in Functional MRI Using the Multivariate General Linear Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Robert Leech ; The Computational, Cognitive and Clinical Neuroimaging Laboratory, The Division of Experimental Medicine, Imperial College London, London, UK ; Dennis Leech

Much current research in functional magnetic resonance imaging (fMRI) employs multivariate machine learning approaches (e.g., support vector machines) to detect distributed spatial patterns from the temporal fluctuations of the neural signal. The aim of many studies is not classification, however, but investigation of multivariate spatial patterns, which pattern classifiers detect only indirectly. Here we propose a direct statistical measure for the existence of distributed spatial patterns (or spatial heterogeneity) applicable to fMRI datasets. We extend the univariate general linear model (GLM), typically used in fMRI analysis, to a multivariate case. We demonstrate that contrasting maximum likelihood estimations of different restrictions on this multivariate model can be used to estimate the extent of spatial heterogeneity in fMRI data. Under asymptotic assumptions inference can be made with reference to the χ2 distribution. The test statistic is then assessed using simulated timecourses derived from real fMRI data followed by analyzing data from a real fMRI experiment. These analyses demonstrate the utility of the proposed measure of heterogeneity as well as considerations in its application. Measuring spatial heterogeneity in fMRI has important theoretical implications in its own right and may have potential uses for better characterising neurological conditions such as stroke and Alzheimer's disease.

Published in:

IEEE Transactions on Medical Imaging  (Volume:30 ,  Issue: 6 )