By Topic

Coordinated Voltage Control Scheme for SEIG-Based Wind Park Utilizing Substation STATCOM and ULTC Transformer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mohamed S. El Moursi ; Electrical Engineering Department, Mansoura University, Mansoura, Egypt ; Birgitte Bak-Jensen ; Mansour H. Abdel-Rahman

This paper presents a coordinated voltage control scheme for improving the network voltage profile and for minimizing the steady-state loading of the STATCOM to effectively support the system during contingencies. The paper addresses implementation issues associated with primary voltage control and optimal tracking secondary voltage control for wind parks based on self-excited induction generators which comprise STATCOM and under-load tap changer (ULTC) substation transformers. The voltage controllers for the STATCOM and ULTC transformer are coordinated and ensure the voltage support. In steady-state operation, the voltage is controlled by only stepping the tap changer when the voltage is outside the deadband region of the ULTC to minimize the number of taps changes. Thus, the STATCOM will be unloaded and ready to react with higher reactive power margin during contingencies. In the paper, the effects of the short circuit ratio of the interconnection and the inherent communication delay between the wind park and the remote bus on the performance of the controllers and the maximum critical clearing time of fault are considered. Simulation results are presented to demonstrate the performance of the controllers in steady-state and in response to system contingency situations.

Published in:

IEEE Transactions on Sustainable Energy  (Volume:2 ,  Issue: 3 )