Cart (Loading....) | Create Account
Close category search window
 

Composite Model-Based DC Dithering for Suppressing Contour Artifacts in Decompressed Video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xin Jin ; Inf. Technol. Res. Organ., Waseda Univ., Fukuoka, Japan ; Goto, S. ; King Ngi Ngan

Because of the outstanding contribution in improving compression efficiency, block-based quantization has been widely accepted in state-of-the-art image/video coding standards. However, false contour artifacts are introduced, which result in reducing the fidelity of the decoded image/video especially in terms of subjective quality. In this paper, a block-based decontouring method is proposed to reduce the false contour artifacts in the decoded image/video by automatically dithering its direct current (DC) value according to a composite model established between gradient smoothness and block-edge smoothness. Feature points on the model with the corresponding criteria in suppressing contour artifacts are compared to show a good consistency between the model and the actual processing effects. Discrete cosine transform (DCT)-based block level contour artifacts detection mechanism ensures the blocks within the texture region are not affected by the DC dithering. Both the implementation method and the algorithm complexity are analyzed to present the feasibility in integrating the proposed method into an existing video decoder on an embedded platform or system-on-chip (SoC). Experimental results demonstrate the effectiveness of the proposed method both in terms of subjective quality and processing complexity in comparison with the previous methods.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 8 )

Date of Publication:

Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.