By Topic

Approximate propagation of both epistemic and aleatory uncertainty through dynamic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Terejanu, G. ; Dept. of Comput. Sci. & Eng., Univ. at Buffalo, Buffalo, NY, USA ; Singla, P. ; Singh, T. ; Scott, P.D.

When ignorance due to the lack of knowledge, modeled as epistemic uncertainty using Dempster-Shafer structures on closed intervals, is present in the model parameters, a new uncertainty propagation method is necessary to propagate both aleatory and epistemic uncertainty. The new framework proposed here, combines both epistemic and aleatory uncertainty into a second-order uncertainty representation which is propagated through a dynamic system driven by white noise. First, a finite parametrization is chosen to model the aleatory uncertainty by choosing a representative approximation to the probability density function conditioned on epistemic variables. The epistemic uncertainty is then propagated through the moment evolution equations of the conditional probability density function. This way we are able to model the ignorance when the knowledge about the system is incomplete. The output of the system is a Dempster-Shafer structure on sets of cumulative distributions which can be combined using different rules of combination and eventually transformed into a singleton cumulative distribution function using Smets' pignistic transformation when decision making is needed.

Published in:

Information Fusion (FUSION), 2010 13th Conference on

Date of Conference:

26-29 July 2010