By Topic

Hierarchical clustering of 3-D line segments for building detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dong-Chul Park ; Intelligent Computing Research Lab, Dept. of Electronics Engineering, Myong Ji University, KOREA

A novel approach for an efficient extraction of rectangular boundaries from aerial image data is proposed in this paper. In this approach, a Centroid Neural Network (CNN) with a metric of line segments is utilized for connecting low-level linear structures or grouping similar objects. The proposed an approach, called hierarchical clustering method, utilizes the fact that rooftops of a building are about the same height and perform clustering process with candidate 3-D line segments with similar heights. Experiments are performed with a set of high resolution satellite image data. The results show that the proposed hierarchical clustering method can remove noisy segments such as shade lines efficiently and find more accurate rectangular boundaries.

Published in:

The 10th IEEE International Symposium on Signal Processing and Information Technology

Date of Conference:

15-18 Dec. 2010