By Topic

Automatic Detection of Temporal Gait Parameters in Poststroke Individuals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Paulo Lopez-Meyer ; Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, USA ; George D. Fulk ; Edward S. Sazonov

Approximately one-third of people who recover from a stroke require some form of assistance to walk. Repetitive task-oriented rehabilitation interventions have been shown to improve motor control and function in people with stroke. Our long-term goal is to design and test an intensive task-oriented intervention that will utilize the two primary components of constrained-induced movement therapy: massed, task-oriented training and behavioral methods to increase use of the affected limb in the real world. The technological component of the intervention is based on a wearable footwear-based sensor system that monitors relative activity levels, functional utilization, and gait parameters of affected and unaffected lower extremities. The purpose of this study is to describe a methodology to automatically identify temporal gait parameters of poststroke individuals to be used in assessment of functional utilization of the affected lower extremity as a part of behavior enhancing feedback. An algorithm accounting for intersubject variability is capable of achieving estimation error in the range of 2.6-18.6% producing comparable results for healthy and poststroke subjects. The proposed methodology is based on inexpensive and user-friendly technology that will enable research and clinical applications for rehabilitation of people who have experienced a stroke.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:15 ,  Issue: 4 )