Cart (Loading....) | Create Account
Close category search window
 

A Novel Edge Detection Algorithm Based on Global Minimization Active Contour Model for Oil Slick Infrared Aerial Image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu Jing ; Inf. Sci. & Technol. Coll., Dalian Maritime Univ., Dalian, China ; Jubai An ; Zhaoxia Liu

Edge detection is a crucial approach for the location and acreage calculation of oil slick when oil spills on the sea. In this paper, in view of intensity inhomogeneity, high noise, and blurring of oil slick infrared (IR) aerial images, a novel algorithm is proposed to detect the edges of oil slick IR aerial images. In the proposed algorithm, we define an energy function model combining a region-scalable-fitting concept and a global minimization active contour (GMAC) model. The proposed novel algorithm avoids the existence of local minima and meanwhile deals with the intensity inhomogeneity, noise, and weak edge boundaries exiting in oil spill IR images. In the process of the active contour evolving toward object boundaries and numerical minimization, a dual formulation is used for overcoming drawbacks of the usual level set and gradient descent method so that the process of minimization can be much easier and our algorithm is independent of the initial position of the contour. Using the proposed algorithm, we can gain continuous and closed edges of oil slick IR aerial images. The experiment results have shown that the proposed algorithm outperforms conventional edge detection methods and other algorithms in terms of the efficiency and accuracy. In addition, the proposed algorithm is extended to synthetic-aperture-radar oil slick images, and satisfactory results of edge extraction can be obtained as well.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 6 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.