By Topic

Optimizing Multiway Joins in a Map-Reduce Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Afrati, F.N. ; Sch. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens, Athens, Greece ; Ullman, J.D.

Implementations of map-reduce are being used to perform many operations on very large data. We examine strategies for joining several relations in the map-reduce environment. Our new approach begins by identifying the “map-key,” the set of attributes that identify the Reduce process to which a Map process must send a particular tuple. Each attribute of the map-key gets a “share,” which is the number of buckets into which its values are hashed, to form a component of the identifier of a Reduce process. Relations have their tuples replicated in limited fashion, the degree of replication depending on the shares for those map-key attributes that are missing from their schema. We study the problem of optimizing the shares, given a fixed number of Reduce processes. An algorithm for detecting and fixing problems where a variable is mistakenly included in the map-key is given. Then, we consider two important special cases: chain joins and star joins. In each case, we are able to determine the map-key and determine the shares that yield the least replication. While the method we propose is not always superior to the conventional way of using map-reduce to implement joins, there are some important cases involving large-scale data where our method wins, including: 1) analytic queries in which a very large fact table is joined with smaller dimension tables, and 2) queries involving paths through graphs with high out-degree, such as the Web or a social network.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 9 )