By Topic

GPU Acceleration of Runge-Kutta Integrators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Murray, L. ; Math., Inf. & Stat., CSIRO, Wembley, WA, Australia

We consider the use of commodity graphics processing units (GPUs) for the common task of numerically integrating ordinary differential equations (ODEs), achieving speedups of up to 115-fold over comparable serial CPU implementations, and 15-fold over multithreaded CPU code with SIMD intrinsics. Using Lorenz '96 models as a case study, single and double precision benchmarks are established for both the widely used DOPRI5 method and computationally tailored low-storage RK4(3)5[2R+]C. A range of configurations are assessed on each, including multithreading and SIMD intrinsics on the CPU, and GPU kernels parallelized over both the dimensionality of the ODE system and number of trajectories. On the GPU, we draw particular attention to the problem of variable task-length among threads of the same warp, proposing a lightweight strategy of assigning multiple data items to each thread to reduce the prevalence of redundant operations. A simple analysis suggests that the strategy can draw performance close to that of ideal parallelism, while empirical results demonstrate up to a 10 percent improvement over the standard approach.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 1 )